Outcome measurement in sports physiotherapy is directed at identifying an athlete’s ability to tolerate the physical demands inherent in sport-specific activity and prevent re-injury on return-to-competition. Outcome measures currently utilized following anterior cruciate ligament (ACL) injury include clinical, functional performance test (FPT), and subjective measures. The FPT simulates the forces encountered during sport-specific activity under controlled clinical conditions, the use of the FPT increasing since traditional clinical outcome measures, such as knee joint laxity and isokinetic quadriceps muscle strength, demonstrate weak to moderate and often insignificant relationships with functional tasks. Many FPTs, such as hop, leap, jump, sprint, and agility FPTs, may be administered to an athlete following knee ligament injury. However, when selecting a FPT for the assessment of knee function, the clinician must acknowledge issues relating to reliability, validity, data analysis, and at what point in the rehabilitation process a FPT should be administered if the data generated are to be meaningful and useful. Therefore, the purpose of this paper is to present a comprehensive and detailed review of the FPT literature in order to assist the sports physiotherapist with the clinical application of a FPT to an athlete following knee ligament injury.
Functional performance test measures utilized with ACL-D and ACL-R athletes include hop tests (Barber et al. 1990; Brosky et al. 1999; Daniel et al. 1982; Eastlack et al. 1999; Noyes et al. 1991; Rudolph et al. 1999), leap and jump tests (Juris et al. 1997; Risberg & Ekeland 1994), and linear sprint, agility, and stair climbing tests (Barber et al. 1990; Fonseca et al. 1992; Gauff®n et al. 1990; Lephart et al. 1988, 1991, 1992, 1993; Risberg & Ekeland 1994; Tegner & Lysholm 1985; Tegner et al. 1986). A hop FPT involves take-off and landing on the same leg. A leap FPT involves take-off and landing on opposite legs. A jump FPT involves take-off and landing on both legs. A running or stair climbing FPT involves the rapid cyclical alternation between legs. Consequently, hop tests are the preferred type of FPT due to utilization of the uninjured limb as a control for within-subject between-limb comparisons, and as a reference against which discharge from rehabilitation and return-to-competition may be determined (Anderson & Foreman 1996; Barber et al. 1990; Borsa et al. 1998; Daniel et al. 1982; Noyes et al. 1991; Sapega 1990). However, it should be acknowledged that a FPT may be as simple or gross a performance as desired by the clinician, such as hopping or kicking a football, respectively.

Although many FPTs, perhaps in particular a hop FPT, may not be truly sport-specific, some critics might question their use as a measurement tool. However, in the absence of sophisticated laboratory-biased kinematic and kinetic analyses (e.g. 3-D motion analysis, force plate analysis, etc), there is currently no measurement tool other than a FPT available to the sports physiotherapist for the clinical quantification of lower limb function.

The FPT is popular because it requires minimal space, equipment, time, and personnel for its administration in the standard clinical context (Barber et al. 1992; Keskula et al. 1996; Noyes et al. 1991), and because traditional clinical outcome measures predominantly demonstrate weak to moderate and often insignificant relationships with functional tasks in ACL-D, ACL-R, and uninjured subjects (Table 1). According to Vincent (1995), a ‘strong’ relationship (correlation) exists between measures (variables) when the correlation coefficient (r) is ≥ 0.90 and ‘significant’ (i.e. $P \leq 0.05$). Correlation coefficients of 0.50–0.70 and 0.70–0.80 are considered ‘weak’ and ‘moderate’, respectively (Vincent 1995). If the correlation coefficient is ‘insignificant’ (i.e. $P > 0.05$), the relationship is due to chance and has little application to clinical practice (Greenfield et al. 1998a). However, with reference to Table 1, clinicians should not be confused by the assignment of a significant P value to weak or moderate correlation coefficients, since considering the P value alone results in misinterpretation of the relationship between variables (Di Fabio 1999). A study’s assignment of a significant P value to a correlation coefficient has the potential to be deceptive and misleading since statistical significance and weak relationships can occur simultaneously (Di Fabio 1999). Therefore, clinicians should consider the magnitude of the P before the level of significance (P), since it is the magnitude of the r that indicates the degree to which two variables are related (Di Fabio 1999; Greenfield et al. 1998a). A significant r value does not automatically mean there is a strong relationship between two variables (Di Fabio 1999). Consequently, considering the predominantly weak to moderate relationships between traditional clinical outcome measures and functional tasks illustrated in Table 1, no single outcome measure is considered optimal for the evaluation of intervention following ACL injury (Borsa et al. 1998; Miller & Carr 1993; Neeb et al. 1997), and clinical outcome measures alone are considered insufficient in determining an athlete’s readiness for return-to-competition (Anderson & Foreman 1996; Bandy 1992; Keskula et al. 1996).

A FPT measures joint laxity/mobility, muscle extensibility (flexibility), muscle strength and power, proprioception, neuromuscular control, dynamic balance, agility, pain, and athlete-confidence simultaneously (Anderson & Foreman 1996; Barber et al. 1992; Lephart 1994; Lephart et al. 1992; Noyes et al. 1991; Tippett & Voight 1995). Consequently, a FPT reflects a ‘cumulative effect’ since it is unable to identify deficits in specific variables. However, the FPT is still a useful measurement tool for the clinician because it:
- is a quantitative measure utilized to define function and/or outcome.
Relationship between clinical and functional performance test measures

<table>
<thead>
<tr>
<th>Clinical measure</th>
<th>Functional performance test</th>
<th>Study</th>
<th>Subjects</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee joint ROM</td>
<td>Shuttle sprint</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 18)</td>
<td>+0.34</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Semicircular manoeuvre</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 18)</td>
<td>+0.34</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Carioca manoeuvre</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 18)</td>
<td>+0.34</td>
<td>Not stated</td>
</tr>
<tr>
<td>Prone heel height</td>
<td>Single hop for distance</td>
<td>Sachs et al. (1989)</td>
<td>ACL-R (n = 126)</td>
<td>−0.20</td>
<td>−0.01</td>
</tr>
<tr>
<td>Knee joint laxity</td>
<td>Single hop for distance</td>
<td>Eastlack et al. (1999)</td>
<td>ACL-D (n = 45)</td>
<td>+0.20</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Triple hop for distance</td>
<td>Eastlack et al. (1999)</td>
<td>ACL-D (n = 45)</td>
<td>+0.20</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Crossover hop for distance</td>
<td>Eastlack et al. (1999)</td>
<td>ACL-D (n = 45)</td>
<td>+0.20</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Shuttle sprint</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 18)</td>
<td>+0.34</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Semicircular manoeuvre</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 41)</td>
<td>−0.23</td>
<td>> 0.05</td>
</tr>
<tr>
<td></td>
<td>Carioca manoeuvre</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 41)</td>
<td>−0.21</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Thigh circumference</td>
<td>Shuttle sprint</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 18)</td>
<td>+0.34</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Semicircular manoeuvre</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 18)</td>
<td>+0.34</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Carioca manoeuvre</td>
<td>Lephart et al. (1988)</td>
<td>ACL-D (n = 18)</td>
<td>+0.34</td>
<td>Not stated</td>
</tr>
<tr>
<td>Isokinetic quadriceps</td>
<td>Single jump for distance</td>
<td>Wiklander & Lysholm (1987)</td>
<td>Uninjured (n = 39)</td>
<td>+0.84</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Muscle strength</td>
<td>Single hop for distance</td>
<td>Delitto et al. (1993)</td>
<td>ACL-R (n = 39)</td>
<td>+0.46</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenberger & Paterno (1994a)</td>
<td>Uninjured (n = 20)</td>
<td>+0.65</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenberger & Paterno (1995)</td>
<td>Uninjured (n = 20)</td>
<td>+0.78</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noyes et al. (1991)</td>
<td>ACL-D (n = 67)</td>
<td>+0.49</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ostenberg et al. (1998)</td>
<td>Uninjured (n = 101)</td>
<td>+0.42</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petschnig et al. (1998)</td>
<td>ACL-R (n = 30)</td>
<td>+0.45</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sachs et al. (1989)</td>
<td>ACL-R (n = 126)</td>
<td>+0.60</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sekiya et al. (1998)</td>
<td>ACL-R (n = 107)</td>
<td>+0.25</td>
<td>< 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilk et al. (1994)</td>
<td>ACL-R (n = 50)</td>
<td>+0.62</td>
<td>< 0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petschnig et al. (1998)</td>
<td>ACL-R (n = 30)</td>
<td>+0.48</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilk et al. (1994)</td>
<td>ACL-R (n = 50)</td>
<td>+0.69</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiklander & Lysholm (1987)</td>
<td>Uninjured (n = 39)</td>
<td>+0.84</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delitto et al. (1993)</td>
<td>ACL-R (n = 39)</td>
<td>+0.43</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petschnig et al. (1998)</td>
<td>ACL-R (n = 30)</td>
<td>+0.01</td>
<td>> 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lephart et al. (1992)</td>
<td>ACL-D (n = 41)</td>
<td>−0.20</td>
<td>> 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lephart et al. (1992)</td>
<td>ACL-D (n = 41)</td>
<td>−0.30</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Isokinetic hamstring</td>
<td>Single jump for distance</td>
<td>Wiklander & Lysholm (1987)</td>
<td>Uninjured (n = 39)</td>
<td>+0.63</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Muscle strength</td>
<td>Single hop for distance</td>
<td>Noyes et al. (1991)</td>
<td>ACL-D (n = 67)</td>
<td>+0.32</td>
<td>< 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pincivero et al. (1997)</td>
<td>Uninjured (n = 37)</td>
<td>+0.55</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sachs et al. (1989)</td>
<td>ACL-R (n = 126)</td>
<td>+0.31</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sekiya et al. (1998)</td>
<td>ACL-R (n = 107)</td>
<td>+0.23</td>
<td>< 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kraemer et al. (1995)</td>
<td>Uninjured (n = 38)</td>
<td>+0.38</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiklander & Lysholm (1987)</td>
<td>Uninjured (n = 39)</td>
<td>+0.77</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delitto et al. (1993)</td>
<td>ACL-R (n = 39)</td>
<td>+0.43</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lephart et al. (1992)</td>
<td>ACL-D (n = 41)</td>
<td>−0.23</td>
<td>> 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lephart et al. (1992)</td>
<td>ACL-D (n = 41)</td>
<td>−0.22</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Isometric quadriceps</td>
<td>Single hop for distance</td>
<td>Sekiya et al. (1998)</td>
<td>ACL-R (n = 58)</td>
<td>+0.37</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Muscle strength</td>
<td>Single hop for distance</td>
<td>Sekiya et al. (1998)</td>
<td>ACL-R (n = 58)</td>
<td>+0.35</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Isometric hamstring</td>
<td>Single jump for distance</td>
<td>Blackburn & Morrissey (1998)</td>
<td>Uninjured (n = 20)</td>
<td>+0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>1RM</td>
<td>Single jump for distance</td>
<td>Blackburn & Morrissey (1998)</td>
<td>Uninjured (n = 20)</td>
<td>+0.10</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

r = Pearson product-moment correlation coefficient; P = Probability statement/statistical significance (Greenfield et al. 1996); ROM = Range of motion; ACL-R = Anterior cruciate ligament reconstruction subjects; ACL-D = Anterior cruciate ligament deficient subjects; 1RM = One repetition maximum.
simulates the forces encountered during sport-specific activity under controlled clinical conditions (Barber et al. 1992; Tippett & Voight 1995).

- indirectly assesses the extent to which pain inhibits the execution of functional tasks (Barber et al. 1992; Noyes et al. 1991).

- indirectly quantifies muscle strength and power (Bandy 1992; Barber et al. 1992; Tippett & Voight 1995).

- indirectly assesses the ability of a limb to absorb force (Bandy 1992).

- indirectly assesses the ability to dynamically control tibial translation during the application of shearing and rotational forces to the knee (Lephart et al. 1989)

- indirectly assesses the magnitude of between-limb differences that may predispose re-injury (Bandy 1992; Barber et al. 1992; Tippett & Voight 1995).

- quantitatively assesses progress within rehabilitation (Bandy 1992; Tippett & Voight 1995).

- qualitatively assesses compensation, or asymmetry, via clinical observation (Bandy 1992; Lephart & Henry 1995; Tippett & Voight 1995).

- provides psychological reassurance to the athlete (Barber et al. 1992; Noyes et al. 1991; Tippett & Voight 1995).

- establishes sport-specific, position-specific, and within-group normative data (Davies 1995; Tippett & Voight 1995).

- correlates (r = 0.62–0.75, P < 0.05) with subjective assessment of knee function (Goh & Boyle 1997).

When selecting a FPT the clinician must acknowledge issues relating to reliability, validity, data analysis and at what point in the rehabilitation process a FPT should be administered if the data generated are to be meaningful and useful. These issues are critical if an athlete is to safely return-to-competition and the risk of re-injury is to be minimized. Therefore, the purpose of this paper is to present a comprehensive and detailed review of the literature in order to assist the sports physiotherapist with the selection and clinical application of a FPT for an athlete with knee ligament injury.

Reliability

Reliability refers to whether a specific measurement protocol, also termed ‘operational definition’ (Rothstein 1985, 1993), minimizes measurement error (i.e. systematic and/or random error) producing accurate and consistent measurements during repeated measures of the same variable (Atkinson & Nevill 1998; Greenfield et al. 1998b; Krebs 1987; Portney & Watkins 1993; Rothstein 1985, 1993). Simply, ‘reliability’ is an indication of a measurement protocol’s standardization (Jones 1991; Rothstein 1985). For example, will a measurement protocol produce accurate and consistent results if the same clinician performs the measurement on separate occasions (intra-tester reliability), or if a different clinician performs the measurement on separate occasions (inter-tester reliability)?

For the sports physiotherapist, ‘high’ measurement reliability as a result of strictly standardized measurement protocols is critical if criteria-based return-to-competition decisions potentially result from the objective data generated following the administration of a FPT. The reliability of selected FPTs utilized in the assessment of lower limb function is illustrated in Table 2.

The Intraclass Correlation Coefficient (ICC) is currently the recommended convention for quantifying measurement reliability (Denegar & Ball 1993; Portney & Watkins 1993), with an ICC ≥ 0.90 considered indicative of ‘highly’ reliable clinical measurement protocols (Portney & Watkins 1993). However, there are six ‘forms’ of ICC (Portney & Watkins 1993; Shrout & Fleiss 1979), with the selected form potentially affecting the magnitude of the final ICC value (Denegar & Ball 1993; Krebs 1984, 1986; Portney & Watkins 1993). This, in turn, has the potential to influence whether clinicians interpret a measurement protocol as being appropriately ‘standardized’. Thus, clinicians should familiarize themselves with the concept of measurement reliability, since the implications of a FPT which is assigned an ‘inflated’ ICC due utilization of the incorrect ‘form’ include an athlete’s re-injury due to inaccurate measurements and invalid data, and a premature return-to-competition. Detailed discussions of reliability in sports medicine are
Table 2 Reliability of selected functional performance tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Study</th>
<th>Subjects</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single jump for distance</td>
<td>Johnson & Nelson (1979)</td>
<td>Uninjured (n not stated)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td>Single hop for distance</td>
<td>Bandy et al. (1994)</td>
<td>Uninjured (n = 18)</td>
<td>0.93 ICC</td>
</tr>
<tr>
<td></td>
<td>Bolgia & Keskula (1997)</td>
<td>Uninjured (n = 20)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Booher et al. (1993)</td>
<td>Uninjured (n = 18)</td>
<td>0.97 ICC</td>
</tr>
<tr>
<td></td>
<td>Brosky et al. (1999)</td>
<td>ACL-R (n = 15)</td>
<td>0.97 ICC</td>
</tr>
<tr>
<td></td>
<td>Greenberger & Paterno (1994b)</td>
<td>Uninjured (n = 20)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Hu et al. (1992)</td>
<td>Uninjured (n = 30)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Kramer et al. (1992)</td>
<td>ACL-R (n = 38)</td>
<td>0.93 ICC</td>
</tr>
<tr>
<td></td>
<td>Paterno & Greenberger (1996)</td>
<td>Uninjured (n = 20)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Paterno & Greenberger (1996)</td>
<td>ACL-R (n = 13)</td>
<td>0.89 ICC</td>
</tr>
<tr>
<td></td>
<td>Worrell et al. (1993)</td>
<td>Uninjured (n = 36)</td>
<td>0.90 ICC</td>
</tr>
<tr>
<td>Triple hop for distance</td>
<td>Bandy et al. (1994)</td>
<td>Uninjured (n = 18)</td>
<td>0.94 ICC</td>
</tr>
<tr>
<td></td>
<td>Bolgia & Keskula (1997)</td>
<td>Uninjured (n = 20)</td>
<td>0.95 ICC</td>
</tr>
<tr>
<td>Crossover hop for distance</td>
<td>Bandy et al. (1994)</td>
<td>Uninjured (n = 18)</td>
<td>0.90 ICC</td>
</tr>
<tr>
<td></td>
<td>Bolgia & Keskula (1997)</td>
<td>Uninjured (n = 20)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Goh & Boyle (1997)</td>
<td>Uninjured (n = 10)</td>
<td>0.85 ICC</td>
</tr>
<tr>
<td>Adapted crossover hop for distance</td>
<td>Clark et al. (1999)</td>
<td>Uninjured (n = 12)</td>
<td>0.94 ICC</td>
</tr>
<tr>
<td>Six metre hop for time</td>
<td>Bolgia & Keskula (1997)</td>
<td>Uninjured (n = 20)</td>
<td>0.66 ICC</td>
</tr>
<tr>
<td></td>
<td>Booher et al. (1993)</td>
<td>Uninjured (n = 18)</td>
<td>0.77 ICC</td>
</tr>
<tr>
<td></td>
<td>Brosky et al. (1999)</td>
<td>ACL-R (n = 15)</td>
<td>0.97 ICC</td>
</tr>
<tr>
<td></td>
<td>Worrell et al. (1993)</td>
<td>Uninjured (n = 36)</td>
<td>0.77 ICC</td>
</tr>
<tr>
<td>Twelve metre hop for time</td>
<td>Goh & Boyle (1997)</td>
<td>Uninjured (n = 10)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td>Ten feet hop for time</td>
<td>Bandy et al. (1994)</td>
<td>Uninjured (n = 18)</td>
<td>0.92 ICC</td>
</tr>
<tr>
<td>Thirty metre agility hop for time</td>
<td>Booher et al. (1993)</td>
<td>Uninjured (n = 18)</td>
<td>0.09 ICC</td>
</tr>
<tr>
<td>Vertical jump</td>
<td>Bocchinfuso et al. (1994)</td>
<td>Uninjured (n = 15)</td>
<td>0.99 ICC</td>
</tr>
<tr>
<td></td>
<td>Johnson & Nelson (1979)</td>
<td>Uninjured (n not stated)</td>
<td>0.93 ICC</td>
</tr>
<tr>
<td></td>
<td>Kraemer et al. (1995)</td>
<td>Uninjured (n = 38)</td>
<td>0.97 ICC</td>
</tr>
<tr>
<td></td>
<td>Locke et al. (1997)</td>
<td>Uninjured (n = 11)</td>
<td>0.98 ICC</td>
</tr>
<tr>
<td></td>
<td>Thomas et al. (1996)</td>
<td>Uninjured (n = 19)</td>
<td>0.95 ICC</td>
</tr>
<tr>
<td>Vertical hop</td>
<td>Bandy et al. (1994)</td>
<td>Uninjured (n = 18)</td>
<td>0.85 ICC</td>
</tr>
<tr>
<td></td>
<td>Brosky et al. (1999)</td>
<td>ACL-R (n = 15)</td>
<td>0.97 ICC</td>
</tr>
<tr>
<td></td>
<td>Clark et al. (1999)</td>
<td>Uninjured (n = 12)</td>
<td>0.94 ICC</td>
</tr>
<tr>
<td></td>
<td>Hu et al. (1992)</td>
<td>Uninjured (n = 30)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Petschnig et al. (1998)</td>
<td>Uninjured (n = 50)</td>
<td>0.89 ICC</td>
</tr>
<tr>
<td></td>
<td>Risberg et al. (1995)</td>
<td>Uninjured (n = 21)</td>
<td>0.95 ICC</td>
</tr>
<tr>
<td>Stairs hop for time</td>
<td>Goh & Boyle (1997)</td>
<td>Uninjured (n = 10)</td>
<td>0.94 ICC</td>
</tr>
<tr>
<td></td>
<td>Risberg et al. (1995)</td>
<td>Uninjured (n = 21)</td>
<td>0.81 ICC</td>
</tr>
<tr>
<td>Linear sprint</td>
<td>Bocchinfuso et al. (1994)</td>
<td>Uninjured (n = 15)</td>
<td>0.85 ICC</td>
</tr>
<tr>
<td></td>
<td>Kraemer et al. (1995)</td>
<td>Uninjured (n = 38)</td>
<td>0.98 ICC</td>
</tr>
<tr>
<td></td>
<td>Locke et al. (1997)</td>
<td>Uninjured (n = 11)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Thomas et al. (1996)</td>
<td>Uninjured (n = 19)</td>
<td>0.99 ICC</td>
</tr>
<tr>
<td>Shuttle sprint</td>
<td>Bocchinfuso et al. (1994)</td>
<td>Uninjured (n = 15)</td>
<td>0.99 ICC</td>
</tr>
<tr>
<td></td>
<td>Lephart et al. (1991)</td>
<td>ACL-D (n = 18)</td>
<td>0.89 ICC</td>
</tr>
<tr>
<td></td>
<td>Locke et al. (1997)</td>
<td>Uninjured (n = 11)</td>
<td>0.90 ICC</td>
</tr>
<tr>
<td>Agility sprint</td>
<td>Anderson et al. (1991)</td>
<td>Uninjured (n = 9)</td>
<td>0.95 ICC</td>
</tr>
<tr>
<td></td>
<td>Bocchinfuso et al. (1994)</td>
<td>Uninjured (n = 15)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td></td>
<td>Risberg et al. (1995)</td>
<td>Uninjured (n = 21)</td>
<td>0.81 ICC</td>
</tr>
<tr>
<td>Cybex reactor*</td>
<td>Hertel et al. (1999)</td>
<td>Uninjured (n = 13)</td>
<td>0.68 ICC</td>
</tr>
<tr>
<td>Agility task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semicircular Manoeuvre</td>
<td>Lephart et al. (1991)</td>
<td>ACL-D (n = 18)</td>
<td>0.96 ICC</td>
</tr>
<tr>
<td>Carioca Manoeuvre</td>
<td>Lephart et al. (1991)</td>
<td>ACL-D (n = 18)</td>
<td>0.96 ICC</td>
</tr>
</tbody>
</table>

ACL-R = Anterior cruciate ligament reconstruction subjects; ACL-D = Anterior cruciate ligament deficient subjects; ICC = Intraclass correlation coefficient; r = Pearson product-moment correlation coefficient.
presented by Atkinson and Nevill (1998), and Denegar and Ball (1993).

Furthermore, although Table 2 also illustrates examples of the Pearson Product-Moment Correlation Coefficient (r) for quantifying FPT reliability, clinicians are reminded that r is a bivariate statistic which consistently overestimates reliability due to its inappropriate application to univariate data (Atkinson & Nevill 1998; Denegar & Ball 1993; Portney & Watkins 1993; Vincent 1995). Therefore, studies which employ r to quantify reliability also result in inflated correlation coefficients and should be interpreted with caution.

Validity

According to Anderson and Foreman (1996), Barber et al. (1990), and Risberg and Ekeland (1994), the validity of existing FPTs of knee function has yet to be established. Validity refers to whether a measurement protocol actually measures the variable it is intended to measure (Gould 1994; Greenfield et al. 1998b; Krebs 1987; Portney & Watkins 1993; Rothstein 1985, 1993). For example, are active knee extension goniometry or mid-thigh circumference valid measures of quadriceps muscle strength?

There are four types of measurement validity: face validity, construct validity, content validity, and criteria-related validity (Gould 1994; Portney & Watkins 1993; Rothstein 1985, 1993). Face validity refers to whether a measurement protocol appears to measure the variable of interest, being based purely on clinicians’ opinions rather than scientific evidence (Rothstein 1985). For example, is an isokinetic dynamometer a ‘face valid’ measure of muscle strength?

Construct validity refers to the inference a measurement protocol is valid based on scientific hypothesis, being a theoretical form of validity (Rothstein 1985, 1993). It is the ‘idea’ underlying the measurement protocol. For example, due to the many different ways in which muscles can express force (Mayhew & Rothstein 1985), a deliberately non-specific definition of ‘muscle strength’ is the ability of a muscle to produce force. Therefore, a measurement tool which quantifies the amount of force a muscle produces could, in turn, be considered a valid measure of muscle strength. Since isokinetic dynamometers indirectly measure the amount of force a muscle produces via a computer-configured strain-gauge or load-cell (Dvir 1995; Kannus 1994; Mayhew & Rothstein 1985; Perrin 1993), isokinetic dynamometers may be considered a ‘construct valid’ measure of muscle strength.

Content validity refers to whether a measurement protocol is valid based on its ability to reflect the variable of interest, also being a theoretical form of validity (Rothstein 1985, 1993). Essentially, once the idea has been formed that a specific variable can be measured in a specific way (construct validity), does the measurement protocol reflect accepted units of measurement (e.g. newton-metres) associated with the variable of interest? For example, muscles produce force as they induce joint rotations, dynamic rotational force (torque) is quantified in newton-metres (Publications Advisory Committee 1992), and isokinetic dynamometers utilize newton-metres (Nm) as their units of measurement (Dvir 1995; Kannus 1994; Perrin 1993). Therefore, isokinetic dynamometers may also be considered a ‘content valid’ measure of dynamic muscle strength, quantified in Nm.

Criteria-related validity refers to whether a measurement protocol may be considered valid when compared to specific scientific criteria (Rothstein 1985, 1993). For example, with further reference to isokinetic dynamometry, a criteria for assessing its validity as a measure of muscle strength might be the mode of muscle action during sport-specific activity. Muscles produce force via isometric and isotonic muscle actions during muscle function in sport, never isokinetic muscle actions. Therefore, although isokinetic dynamometry appears to demonstrate face, construct, and content validity, how can it be a truly valid measure of ‘functional’ muscle strength if the only time muscles produce force via isokinetic muscle actions is when they are applied against an isokinetic dynamometer? Subsequently, it appears that isokinetic dynamometry is not a truly valid measure of functional muscle strength since it lacks fundamental muscle physiology-based criteria-related validity. This may explain the predominantly weak to moderate, and often insignificant, relationship
between isokinetic thigh muscle strength and many FPTs (Table 1).

Clearly, validity is a critical concept for the clinician when selecting a FPT. At present, the validity of a FPT can be considered from two predominant perspectives.

First, with regard to biomechanics. Laboratory based kinematic and kinetic analyses have demonstrated the knee contributes 49±56% to a vertical FPT (Hubley & Wells 1983; Luhtanen & Komi 1978; Morrissey 1994), but only 3.9% to a horizontal FPT (Robertson & Fleming 1987). Thus, horizontal FPTs (e.g. single hop for distance) may not be the most valid measure of knee function with regard to established biomechanical data. This is an example of how horizontal FPTs fail to demonstrate criteria-related validity, the criteria being known knee joint contributions to horizontal vs vertical athletic performance.

Second, with regard to sensitivity and specificity, and the ability of a FPT to identify dysfunctional knees. Sensitivity refers to the ability of a measurement protocol to detect the ‘real’ presence of a suspected condition (e.g. mechanical/functional knee instability), and obtain a ‘true-positive’ result (Portney & Watkins 1993; Wojtys et al. 1996). Specificity refers to the ability of a measurement protocol to detect the ‘real’ absence of a suspected condition and obtain a ‘true-negative’ result (Portney & Watkins 1993; Wojtys et al. 1996).

The sensitivity and specificity of a FPT can be hypothesized by the apparent physical demands of a FPT, or its face validity. For example, Anderson and Foreman (1996), suggest the crossover hop for distance, originally described by Noyes et al. (1991), to be a more sensitive measure of knee function than other hop tests since it imposes both frontal plane and rotational forces on the knee in addition to the predominantly sagittal plane forces displayed by the majority of horizontal FPTs. Preliminary evidence in support of this suggestion has recently been presented by Eastlack et al. (1999), who report the crossover hop for distance as being more discriminate of ‘copers’ vs ‘non-copers’ in ACL-D athletes (n = 45) than the single hop for distance, triple hop for distance, or 6 m hop for time.

Furthermore, Clark (1998), has identified a between-limb trend (P = 0.056) for the single hop for distance, but a between-limb significant difference (P = 0.014) for a modified crossover hop for distance in a group of ACL-R subjects (n = 10), concluding the modified crossover hop for distance to be a more sensitive measure for detecting between-limb differences. This is an example of how the crossover hop for distance apparently succeeds in demonstrating a specific criteria-related validity, the criteria being a between-limb significant difference (P < 0.05) based on performance of the uninjured limb as a control. Thus, the process of data analysis can also contribute to the apparent sensitivity of a FPT. This is considered in more detail in the next section.

Determining whether a FPT is a valid measure of knee function is clearly a complex issue. At present there is no consensus in the literature. Therefore, when selecting a specific FPT for the assessment of knee function, clinicians must decide how to define validity: whether to consider knee joint contributions to specific tasks (i.e. horizontal vs vertical), or whether to consider a FPT’s ability to detect between-limb differences? To complicate matters further, it is beginning to become apparent that some FPTs, such as the vertical hop, are considered more suitable for measuring force production at the knee (Clark et al. 1999), whilst others, such as the single hop for distance, are considered more suitable for measuring force absorption at the knee (Juris et al. 1997).

Clearly, much research is needed to determine which FPTs are optimal for assessing which variables of knee function. In fact, research is first needed to determine which variables (e.g. joint laxity, muscle strength, proprioception, neuromuscular control, dynamic balance, etc), most influence, or have the strongest relationship to, the successful execution of a FPT. A paradigm for the criteria-related validity of the FPT has yet to be established.

Data analysis

Depending upon the FPT which is selected, lower limb function is indirectly quantified utilizing distance (e.g. single hop for distance), or time (e.g. 6 m hop for time). Thus, data which is generated from the execution of a FPT.
reflects the distance achieved following the performance of a specified task, or the time taken to perform a specified task. Depending upon the number of trials which the athlete performs, the clinician has the option of utilizing maximum distance, minimum time, or mean distance or mean time as raw data for data analysis. However, significant differences ($P < 0.01$) have been identified for the final criterion measurement depending upon whether a maximum value (i.e. ‘best’ of three trials), or mean value (i.e. mean of three trials), is employed as raw data (Kramer et al. 1992). The author suggests the athlete’s ‘best’ value is utilized as raw data since recent research demonstrated that maximum hop distance was consistently achieved on the third of three trials for the single hop for distance and a modified crossover hop for distance, being attributed to a warm-up, learning, and confidence effect (Clark 1998), and because it seems logical the athlete’s ‘best’ performance is measured if return-to-competition inferences potentially result from the administration of a FPT.

The literature illustrates that hop FPT raw data may be examined utilizing two predominant methods of data analysis: a paired t-test in relation to within-subject between-limb significant differences (Barber et al. 1990; Gauffin et al. 1990; Paterno & Greenberger 1996; Risberg & Ekland 1994; Tegner et al. 1986), or a limb symmetry index (Fig. 1) in relation to normative data (Barber et al. 1990; Daniel et al. 1982; Juris et al. 1997; Kramer et al. 1992; Noyes et al. 1991; Petschnig et al. 1998).

With regard to statistical analysis, several authors have detected between-limb significant differences ($P < 0.05$) for the single hop for distance (Barber et al. 1990; Gauffin et al. 1990; Paterno & Greenberger 1996; Risberg & Ekeland 1994; Tegner et al. 1986), or a modified crossover hop for distance (Clark 1998).

With regard to a limb symmetry index (LSI) current data suggests that ‘normal’ knee function exists with a LSI $\geq 85\%$ (Barber et al. 1990), or $\geq 90\%$ (Daniel et al. 1982; Petschnig et al. 1998). However, Barber et al. (1990), and Noyes et al. (1991), concluded the single hop for distance, triple hop for distance, 6 m hop for time, and crossover hop for distance were insensitive measures of knee function since 50% of ACL-D subjects achieved a LSI $\geq 85\%$. In addition, Barber et al. (1990), also concluded the vertical hop was insensitive since 27% of uninjured subjects achieved a LSI $\leq 80\%$, and that two types of shuttle run were also insensitive since 90% of ACL-D subjects achieved a LSI $\geq 85\%$. Yet, in contrast to Barber et al. (1990), other authors consider the vertical hop is a sensitive measure of knee function since 100% of ACL-R subjects achieved a LSI $\leq 85\%$ at 13 and 54 weeks post-surgery (Petschnig et al. 1998).

The LSI is useful to the clinician since it can be quickly and easily calculated (Fig. 1) in the absence of statistical software, and because it utilizes the uninjured limb as a control for within-subject between-limb comparisons (Anderson & Foreman 1996; Barber et al. 1990; Borsa et al. 1998; Daniel et al. 1982; Noyes et al. 1991; Sapega 1990), generating a single unit (%) potentially indicative of injured limb deficits. However, clinicians should acknowledge three assumptions underlying the application of the LSI. First, the assumption the control (uninjured) limb is ‘normal’ in relation to the variables being measured within a FPT (e.g. joint laxity, muscle strength, proprioception, dynamic balance, etc). Second, the assumption the control limb has not undergone a significant ‘detraining-effect’ secondary to reduced physical activity as a consequence of the injured limb. Third, there is no effect of limb dominance (e.g. ‘stronger’ limb vs ‘weaker’ limb). With regard to normative data, ‘norm tables’ for variables such as unilateral lower limb muscle strength, proprioception, and dynamic balance are noticeably absent from the literature. With regard to detraining of the control limb, the existence of such an effect can only be established in relation to baseline data collected during pre-participation screening.

$$LSI\% = \frac{\text{injured limb score}}{\text{uninjured limb score}} \times 100$$

Fig. 1 Calculation of Limb Symmetry Index (LSI) (adapted from Barber et al. 1990; Sapega 1990).
With regard to limb dominance, several authors have failed to identify between-limb significant differences (P > 0.05) for isokinetic muscle strength (Guadagnoli et al. 1998; Szczersa et al. 1995), proprioception (Guadagnoli et al. 1998), balance (Guadagnoli et al. 1998; Harrison et al. 1994; Hoffman et al. 1998; Szczersa et al. 1995), or motor skill (Beling et al. 1998; Guadagnoli et al. 1998), in uninjured subjects. Therefore, providing the athlete has no history of pathology or detraining in the ‘uninjured’ limb, and since a dominance effect has yet to be proven in the literature, the clinician can be confident in the utilization of the uninjured limb as a control for data analysis employing the LSI.

Screening criteria prior to initiating functional performance testing

A concept which is surprisingly scarce in the neuromusculoskeletal literature is at what point in the rehabilitation process a FPT should first be administered. Some authors suggest immediately post-injury (Tippett & Voight 1995). However, prior to administering a FPT, it is judicious of the clinician to implement ‘screening criteria’ which are intended to ensure the knee is able to tolerate the forces inherent in a FPT, minimizing the risk of re-injury and progressing rehabilitation toward more sport-specific activities. Essentially, the athlete’s readiness to safely execute a FPT must first in itself be tested. Despite the weak to moderate relationships illustrated in Table 1, the sports physiotherapist can only employ traditional clinical measurement tools to obtain the data utilized as objective screening criteria to this end.

According to Barber et al. (1992), DeMaio et al. (1992), and Lephart and Henry (1995), a FPT should not be administered until any pain, effusion, and crepitus are absent, and the knee demonstrates a full active ROM, emphasizing terminal knee extension (Shelbourne & Nitz 1990). Gait including stair ascent and descent should appear symmetrical during clinical observation (Barber et al. 1992; DeMaio et al. 1992; Lephart & Henry 1995).

With regard to muscle strength, Shelbourne and Nitz (1990), indicate that agility-biased activities may be initiated following ACL-R when an isokinetic quadriceps LSI ≥ 70% is demonstrated. This is in contrast to Sapega (1990), who considers a LSI ≤ 80% in uninjured subjects to be abnormal, regardless of the muscle group being tested or the mode of muscle action. More recently, Barber et al. (1992), have assigned an isokinetic quadriceps LSI ≥ 85% as a screening criteria prior to administering a FPT following ACL-R, whilst DeMaio et al. (1992), and Mangine et al. (1992), have utilized a multi-angle isometric manual muscle test (MMT) of the hip and knee prime movers in the early stage of rehabilitation following ACL-R. An isometric MMT grade 4 is considered acceptable (Mangine et al. 1992). However, clinicians should be aware the MMT is notoriously unreliable (Lamb 1985; Sapega 1990), and that the validity of a grade 4 MMT score has recently been questioned (Dvir 1997). Therefore, the recommendations of DeMaio et al. (1992), and Mangine et al. (1992), should be adopted with caution. Furthermore, when assessing ACL-injured athletes, it is advised that clinicians perform any inner range quadriceps isometric MMT with a proximal tibial hand placement to minimize anterior shear of the tibia on the femur (Jurist & Otis 1985; Wilk & Andrews 1993).

Since many FPTs utilize the stretch-shortening cycle (Allerheiligen 1994; Chu 1992, 1993), the author suggests that pre-participation screening criteria originally designed to prevent injury within plyometric conditioning programmes may be adapted for use with injured athletes prior to the administration of a FPT. Such pre-participation screening criteria have been developed by Chu (1992, 1993), Voight et al. (1995), and Voight and Tippett (1994).

Chu (1992), Voight et al. (1995), and Voight and Tippett (1994), indicate that some authorities consider the successful execution of a one repetition maximum (1RM) squat at 150–200% of bodyweight (BW) to be an appropriate criteria for initiating plyometric conditioning. However, Voight and Tippett (1994), consider this minimum criteria inappropriate and unnecessarily high. Consequently, Chu (1992, 1993), utilizes both a 1RM squat at ≥75% BW, and a timed five repetition maximum (5RM) squat at ≥60% BW in 5 seconds, as two criteria.
for initiating lower limb plyometrics. Yet, it must be remembered that these criteria refer to uninjured athletes executing a bilateral lower limb muscle strength test. Therefore, since unilateral FPTs are preferred for within-subject between-limb comparisons (Anderson & Foreman 1996; Barber et al. 1990; Noyes et al. 1991; Petschnig et al. 1998), and demand high levels of lower limb extensor muscle strength relative to BW, the author suggests a unilateral muscle strength test such as a 1RM single leg press, from 90° to 0° knee flexion, with correct lower limb alignment, controlled concentric and eccentric phases, and an involved limb relative strength index (RSI) ≥ 125%, as a more appropriate minimum criteria for injured athletes. Reliability for such a protocol (n = 12) has been established as high: ICC (2, 1) = 0.94, standard error of measurement (SEM) = 9.7 kg (Clark et al. 1999). The RSI (Fig. 2) for the injured or uninjured limb is calculated by dividing absolute strength or weight pushed (kg) by BW (kg) and multiplying the result by 100 to yield a percentage (Dick 1989; Heyward 1998). In the absence of a leg press resistance machine, this test may be adapted into a step-up test with added external resistance (e.g. hand-weights). An example of such a test has been devised by Worrell et al. (1993).

Voight et al. (1995), and Voight and Tippett (1994), have developed ‘Plyometric Static Stability Testing’. Plyometric Static Stability Testing involves a progression of three simple tests: single leg stance, isometric single leg quarter-squat, and isometric single leg half-squat (Voight et al. 1995; Voight & Tippett 1994). Each test is maintained for a minimum of 30 seconds, first with eyes open and then with eyes closed (Voight et al. 1995; Voight & Tippett 1994). The athlete is observed for correct lower limb alignment and ‘shaking’ or ‘trembling’ of specific muscles (Voight et al. 1995; Voight & Tippett 1994). If poor lower limb alignment is demonstrated through excessive joint movement in a specific direction, the prime movers and synergists responsible for movement in the opposite direction should be assessed for muscle weakness (Voight et al. 1995; Voight & Tippett 1994). Such a strategy encompasses the concept of proximal stability and muscle balance throughout the lower limb (Alexander & Silvester 1999), which may be critical in enhancing knee function and preventing re-injury since proximal lower limb muscle dysfunction is evident secondary to distal lower limb ligamentous injury (Bullock-Saxton 1994). Furthermore, since Voight et al. (1995), and Voight and Tippett (1994), have limited Plyometric Static Stability Testing to 30 seconds for uninjured athletes, the author suggests an arbitrary increase of 50% to 45 seconds may be appropriate for injured athletes.

Table 3 summarizes clinical screening criteria for initiating a FPT. It may not be necessary to utilize all of the criteria suggested in Table 3, but the clinician is encouraged to select a battery of criteria which are thought to be most rigorous according to the perceived physical demands of the intended FPT. Although, as discussed previously, the reliability and validity of the MMT has been questioned, the MMT is included in Table 3 according to recommendations in the literature (DeMaio et al. 1992; Mangine et al. 1992), since there will always a need for the practical and economical quantification of muscle strength in the standard clinical context (Sapega 1990). Furthermore, the author has deliberately excluded isokinetic measurement of muscle strength from Table 3 since isokinetic dynamometers are uncommon clinical measurement tools, and since weak to moderate and often insignificant relationships exist between isokinetic muscle strength and many FPTs (Table 1). Clinicians should decide for themselves whether the inclusion of the MMT and exclusion of isokinetic dynamometry from Table 3 is appropriate or justifiable for clinical practice.

Summary

Outcome measurement in sports physiotherapy is directed at identifying an athlete’s ability to tolerate the physical demands inherent in

\[
\text{RSI (\%)} = \frac{\text{weight pushed (kg)}}{\text{bodyweight (kg)}} \times 100
\]

Fig. 2 Calculation of Relative Strength Index (RSI) (adapted from Dick 1989; Heyward 1998).
sport-specific activity and prevent re-injury on return-to-competition. Many clinical and FPT measures are available to the clinician for the objective assessment of knee function. The FPT is becoming more popular because traditional clinical outcome measures demonstrate weak to moderate and often insignificant relationships to functional tasks (Table 1). Furthermore, of the FPTs available to the clinician (Table 2), hop FPTs are preferred due to utilization of the uninjured limb as a control against which return to competition may be determined. Although hop tests may not be truly sport-specific, they simulate the forces encountered during sport-specific activity under controlled conditions, and are currently the best measurement tool for the clinical assessment of lower limb function in the absence of sophisticated laboratory-biased biomechanical analyses.

When selecting a FPT the clinician must acknowledge issues relating to reliability, validity, data analysis, and at what point in the rehabilitation process a FPT should be administered if an athlete is to safely return-to-competition and the risk of re-injury is to be minimized.

Many FPTs are highly reliable (Table 2), although their validity is a contentious issue and has yet to be definitively established in the literature. However, preliminary evidence of the criteria-related validity of some specific FPTs (e.g. crossover hop for distance) for detecting knee dysfunction is now emerging. The LSI (Fig. 1) is the easiest method of data analysis in the absence of statistical software. Clinicians can be confident in the application of the LSI providing there is no history of pathology or detraining in the ‘uninjured’ limb, and since a dominance effect has yet to be proven in the literature. Prior to the administration of a FPT, the clinician must first assess the athlete’s ability to tolerate the forces inherent in a FPT, further minimizing the risk of re-injury and progressing rehabilitation toward more sport-specific activities. Objective screening criteria utilizing traditional clinical outcome measures have been suggested to this end (Table 3).

Functional performance tests have the potential to yield valuable information to the clinician regarding an athlete’s status following knee ligament injury. Therefore, clinicians should familiarize themselves with the issues discussed previously if the appropriate selection and clinical application of a FPT is intended. Although the literature cited in this paper almost exclusively refers to an ACL-injured population, which is a reflection of the literature rather than a preference of the author, it is suggested the issues discussed in this paper may be extrapolated to other types of knee ligament injury (e.g. medial collateral ligament, posterior cruciate ligament, etc).

Acknowledgements

This paper is an extension of work which was originally performed for a Nuffield Foundation

Table 3 Suggested clinical screening criteria for functional performance testing *

No pain	No effusion	No crepitus
No active ROM emphasizing terminal knee extension	Symmetrical gait including stair ascent and stair descent qualitatively assessed via clinical observation	
Quadriiceps multi-angle isometric MMT ≥ grade 4	Hip and ankle prime mover multi-angle isometric MMT ≥ grade 4 with proximal tibial hand placement	
Lower limb extensor muscle strength LSI ≥ 85%	1RM single leg press RSI ≥ 125% with controlled concentric and eccentric phases	
Single leg stance ≥ 45 seconds with eyes open and eyes closed	Isometric single leg quarter-squat ≥ 45 seconds with eyes open and eyes closed	
Isometric single leg half-squat ≥ 45 seconds with eyes open and eyes closed		

ROM = range of motion; MMT = manual muscle test; LSI = limb symmetry index (injured limb score / uninjured limb score × 100); 1RM = one repetition maximum; RSI = relative strength index (weight pushed [kg] / bodyweight [kg] × 100).
Student Research Scholarship (AT/100/98/0279) when the author was an undergraduate student with the Human Motion and Performance Laboratory of the Department of Health Sciences at the University of East London, UK. Many thanks to Zoe Hudson GradAssocPhys, MCSP, SRP, and Dr Matthew Morrissey ScD, PT, for their encouragement to prepare this paper.

References

Functional performance testing following knee ligament injury

Relationship of isokinetic quadriceps peak torque and
work to one legged hop and vertical jump in ACL
Supplement: S85

DeMaio M, Mangine R, Noyes F, Barber S 1992 Advanced
muscle training after ACL reconstruction: weeks 6 to 52.
Orthopedics 15 (6): 757–767

Denegar C, Ball D 1993 Assessing reliability and precision of
measurement: an introduction to intraclass correlation
and standard error of measurement. Journal of Sport
Rehabilitation 2 (1): 35–42

Black, London

Di Fabio R 1999 Significance of relationships. Journal of
Orthopaedic and Sports Physical Therapy 29 (10):
572–573

Dvir Z 1995 Isokinetics: muscle testing, interpretation, and
clinical application. Churchill Livingstone, Edinburgh

Dvir Z 1997 Grade 4 in manual muscle testing: the problem
with submaximal strength assessment. Clinical
Rehabilitation 11: 36–41

Eastack M, Axe M, Snyder-Mackler L 1999 Laxity, instability,
and functional outcome after ACL injury: copers versus noncopers. Medicine and Science in Sports and
Exercise 31 (2): 210–215

Fonseca S, Magee D, Wessel J, Reid D 1992 Validation of a
251–256

depth performance in soccer players: a comparative
study of two training regimes. Journal of Human
Movement Studies 16: 215–224

Gauflin H, Pettersson G, Tegner Y, Tropp H 1990 Function
testing in patients with old rupture of the anterior
cruciate ligament. International Journal of Sports
Movement Studies 16: 215–224

Greenfield M, Kuhn J, Wojtys E 1998a A statistics primer:
correlation and regression analysis. American Journal of
Sports Medicine 26 (2): 338–343

Greenfield M, Kuhn J, Wojtys E 1998b A statistics primer:
validity and reliability. American Journal of Sports
Medicine 26 (3): 483–485

Guadagnoli M, Kleiner D, Holcomb W, Miller M 1998 The
assessment of leg dominance by motor function,
proprioception, and strength (Abstract). Journal of
Athletic Training 33 (2) Supplement: S23

Harrison E, Dunlop N, Dunlop R, Russell G 1994
Evaluation of single-leg standing following anterior

Hertel J, Denegar C, Johnson P, Hale S, Buckley W 1999
Reliability of the cybecractor in the assessment of an

Heyward V 1998 Advanced fitness assessment and exercise

Unilateral postural control of the functionally dominant
and nondominant extremities of healthy subjects.

Hooper D, Morrissey M, Drehsler W, King J, McAuliffe T,
Bucknill T 1998 Effects of open and closed kinetic chain
eexercise following ACL reconstruction. In: Matsuzaki Y,
Nakamura T, Eichi T (eds). Abstracts of the Third World
Congress of Biomechanics. Sapporo, Japan pp 383

reliability of the one legged vertical jump test and the
one legged standing hop test (Abstract). Journal of

Hulbey C, Wells R 1983 A work-energy approach to
determine individual joint contributions to vertical jump
performance. European Journal of Applied Physiology
50: 247–254

Johnson B, Nelson J 1979 Practical measurements for
evaluation in physical education, 3rd edn. Burgess
Publishing Company, Minnesota

Jones L 1991 The standardized test. Clinical Rehabilitation 5:
177–180

1997 A dynamic test of lower extremity function
following anterior cruciate ligament reconstruction and
rehabilitation. Journal of Orthopaedic and Sports
Physical Therapy 26 (4): 184–191

Jurist K, Otis J 1985 Anteroposterior tibiofemoral
displacements during isometric extension efforts.

Kannus P 1994 Isokinetic evaluation of muscular
performance: implications for muscle testing and
rehabilitation. International Journal of Sports Medicine
15(Supplement 1): S11–S18

Kesikula D, Duncan J, Davis V, Finley P 1996 Functional
outcome measures for knee dysfunction assessment.
Journal of Athletic Training 31 (2): 105–110

retest reliability of the one leg hop test following ACL
reconstruction. Clinical Journal of Sport Medicine 2:
240–243

Kraemer W, Triplett N, Fry A, Koziris L, Bauer J, Lynch J,

© 2001 Harcourt Publishers Ltd

Physical Therapy In Sport (2001) 2, 91–105 103